skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cao, Qiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our extensive experiments reveal that existing key-value stores (KVSs) achieve high performance at the expense of a huge memory footprint that is often impractical or unacceptable. Even with the emerging ultra-fast byte-addressable persistent memory (PM), KVSs fall far short of delivering the high performance promised by PM's superior I/O bandwidth. To find the root causes and bridge the huge performance/memory-footprint gap, we revisit the architectural features of two representative indexing mechanisms (single-stage and multi-stage) and propose a three-stage KVS called FluidKV. FluidKV effectively consolidates these indexes by fast and seamlessly running incoming key-value request stream from the write-concurrent frontend stage to the memory-efficient backend stage across an intermediate stage. FluidKV also designs important enabling techniques, such as thread-exclusive logging, PM-friendly KV-block structures, and dual-grained indexes, to fully utilize both parallel-processing and high-bandwidth capabilities of ultra-fast storage hardware while reducing the overhead. We implemented a FluidKV prototype and evaluated it under a variety of workloads. The results show that FluidKV outperforms the state-of-the-art PM-aware KVSs, including ListDB and FlatStore with different indexes, by up to 9× and 3.9× in write and read throughput respectively, while cutting up to 90% of the DRAM footprint. 
    more » « less
  2. LDPC (Low-Density Parity-Check) codes have become a cornerstone of transforming a noise-filled physical channel into a reliable and high-performance data channel in communication and storage systems. FPGA (Field-Programmable Gate Array) based LDPC hardware, especially for decoding with high complexity, is essential to realizing the high-bandwidth channel prototypes. HLS (High-Level Synthesis) is introduced to speed up the FPGA development of LDPC hardware by automatically compiling high-level abstract behavioral descriptions into RTL-level implementations, but often sub-optimally due to lacking effective low-level descriptions. To overcome this problem, this paper proposes an HLS-friendly QC-LDPC FPGA decoder architecture, HF-LDPC, that employs HLS not only to precisely characterize high-level behaviors but also to effectively optimize low-level RTL implementation, thus achieving both high throughput and flexibility. First, HF-LDPC designs a multi-unit framework with a balanced I/O-computing dataflow to adaptively match code parameters with FPGA configurations. Second, HFLDPC presents a novel fine-grained task-level pipeline with interleaved updating to eliminate stalls due to data interdependence within each updating task. HF-LDPC also presents several HLSenhanced approaches. We implement and evaluate HF-LDPC on Xilinx U50, which demonstrates that HF-LDPC outperforms existing implementations by 4× to 84× with the same parameter and linearly scales to up to 116 Gbps actual decoding throughput with high hardware efficiency. 
    more » « less
  3. null (Ed.)
  4. A key dimension of reproducibility in testbeds is stable performance that scales in regular and predictable ways in accordance with declarative specifications for virtual resources. We contend that reproducibility is crucial for elastic performance control in live experiments, in which testbed tenants (slices) provide services for real user traffic that varies over time. This paper gives an overview of ExoPlex, a framework for deploying network service providers (NSPs) as a basis for live inter-domain networking experiments on the ExoGENI testbed. As a motivating example, we show how to use ExoPlex to implement a virtual software-defined exchange (vSDX) as a tenant NSP. The vSDX implements security-managed interconnection of customer IP networks that peer with it via direct L2 links stitched dynamically into its slice. An elastic controller outside of the vSDX slice provisions network links and computing capacity for a scalable monitoring fabric within the tenant vSDX slice. The vSDX checks compliance of traffic flows with customer-specified interconnection policies, and blocks traffic from senders that trigger configured rules for intrusion detection in Bro security monitors. We present initial results showing the effect of resource provisioning on Bro performance within the vSDX. 
    more » « less